About Me Introduction Data Sources Data Visualization Exploratory Data Analysis ARMA/ARIMA/SARIMA Models ARIMAX/SARIMAX Models Spectral Analysis and Filtering Financial Time Series Models Deep Learning for TS Conclusions

Financial Time Series Models

Realty Income Corporation (O) is revered as one of the most reliable dividend-paying stocks in the market today. For nearly 30 years as a publicly traded real estate investment trust (REIT), Realty Income has provided investors with outsized returns compared to the S&P 500 while paying an attractive dividend yield and consistently raising its dividend payouts. For the I will used Financial time series models to forecast the stock prices and evaluate if the trend follows home ownership rate in the us. The Realty Income Corporation (O) is a real estate investment trust (REIT) that primarily invests in retail and commercial properties, such as shopping centers, drug stores, and convenience stores. While it is not directly related to home ownership rate, it can have an indirect impact on the real estate market and thus the home ownership rate. As a REIT, Realty Income Corporation invests in real estate properties and generates income from rent payments from its tenants. The success or failure of Realty Income Corporation can have an impact on the overall real estate market, including supply and demand for commercial real estate properties, which in turn can affect the prices of residential real estate properties and the home ownership rate. Additionally, the performance of Realty Income Corporation can reflect the overall health of the real estate market, which can impact home ownership rates.

Figure 1: Realty Income Corporation (O) Stock Prices Throughout Time

Model Fitting

Look at the ACF, PACF plots of the returns

Figure 2.


 

ADF Test

data: returns Dickey-Fuller = -19.727, Lag order = 19, p-value = 0.01 alternative hypothesis: stationary

Based on the ACF and the ADF.test we can see that the data is stationary.

 

 
     Acf
 

data:  returns
Chi-squared = 323.74, df = 1, p-value < 2.2e-16

Because the p-value is < 0.05, we reject the null hypothesis and conclude the presence of ARCH(1) effects.

     p  d  q        AIC        BIC       AICc
 1   0  0  0  21944.245  21957.986  21944.246
 2   0  1  0 -37048.962 -37042.091 -37048.961
 3   0  2  0 -31210.805 -31203.935 -31210.805
 4   0  0  1  12282.056  12302.669  12282.060
 5   0  1  1 -37176.467 -37162.725 -37176.465
 6   0  2  1 -37037.957 -37024.215 -37037.955
 7   0  0  2   3648.326   3675.809   3648.331
 8   0  1  2 -37174.737 -37154.125 -37174.733
 9   0  2  2 -37167.371 -37146.760 -37167.368
 10  1  0  0 -37041.126 -37020.514 -37041.123
 11  1  1  0 -37176.957 -37163.216 -37176.956
 12  1  2  0 -33955.641 -33941.900 -33955.639
 13  1  0  1 -37168.068 -37140.585 -37168.062
 14  1  1  1 -37175.015 -37154.403 -37175.012
 15  1  2  1 -37167.592 -37146.980 -37167.589
 16  1  0  2 -37166.811 -37132.457 -37166.802
 17  1  1  2 -37173.173 -37145.691 -37173.168
 18  1  2  2 -37165.760 -37138.278 -37165.755
 19  2  0  0 -37169.046 -37141.563 -37169.040
 20  2  1  0 -37175.032 -37154.420 -37175.028
 21  2  2  0 -34887.046 -34866.434 -34887.042
 22  2  0  1 -37166.806 -37132.452 -37166.798
 23  2  1  1 -37173.131 -37145.649 -37173.126
 24  2  2  1 -37165.719 -37138.237 -37165.713
 25  2  0  2 -37164.872 -37123.648 -37164.861
 26  2  1  2 -37197.328 -37162.974 -37197.319
 27  2  2  2 -37163.645 -37129.293 -37163.637
 28 NA NA NA         NA         NA         NA
 29 NA NA NA         NA         NA         NA
 30 NA NA NA         NA         NA         NA
 31 NA NA NA         NA         NA         NA
 32 NA NA NA         NA         NA         NA
 33 NA NA NA         NA         NA         NA
 34 NA NA NA         NA         NA         NA
 35 NA NA NA         NA         NA         NA
 36 NA NA NA         NA         NA         NA
 37 NA NA NA         NA         NA         NA
 38 NA NA NA         NA         NA         NA
 39 NA NA NA         NA         NA         NA
 40 NA NA NA         NA         NA         NA
 41 NA NA NA         NA         NA         NA
 42 NA NA NA         NA         NA         NA
 43 NA NA NA         NA         NA         NA
 44 NA NA NA         NA         NA         NA
 45 NA NA NA         NA         NA         NA
 46 NA NA NA         NA         NA         NA
 47 NA NA NA         NA         NA         NA
 48 NA NA NA         NA         NA         NA
 49 NA NA NA         NA         NA         NA
 50 NA NA NA         NA         NA         NA
    p d q       AIC       BIC      AICc
 26 2 1 2 -37197.33 -37162.97 -37197.32
    p d q       AIC       BIC      AICc
 11 1 1 0 -37176.96 -37163.22 -37176.96
    p d q       AIC       BIC      AICc
 26 2 1 2 -37197.33 -37162.97 -37197.32

Auto Arima

 Series: log(ots) 
 ARIMA(1,1,0) with drift 
 
 Coefficients:
           ar1  drift
       -0.1355  5e-04
 s.e.   0.0117  2e-04
 
 sigma^2 = 0.0003157:  log likelihood = 18594.47
 AIC=-37182.94   AICc=-37182.94   BIC=-37162.33

Auto arima suggests ARIMA(1,1,0)

 initial  value -4.021303 
 iter   2 value -4.030568
 iter   2 value -4.030568
 iter   2 value -4.030568
 final  value -4.030568 
 converged
 initial  value -4.030521 
 iter   1 value -4.030521
 final  value -4.030521 
 converged

Figure.

 $fit
 
 Call:
 arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S), 
     xreg = constant, transform.pars = trans, fixed = fixed, optim.control = list(trace = trc, 
         REPORT = 1, reltol = tol))
 
 Coefficients:
           ar1  constant
       -0.1355     5e-04
 s.e.   0.0117     2e-04
 
 sigma^2 estimated as 0.0003156:  log likelihood = 18594.47,  aic = -37182.94
 
 $degrees_of_freedom
 [1] 7118
 
 $ttable
          Estimate     SE  t.value p.value
 ar1       -0.1355 0.0117 -11.5369  0.0000
 constant   0.0005 0.0002   2.8192  0.0048
 
 $AIC
 [1] -5.222323
 
 $AICc
 [1] -5.222323
 
 $BIC
 [1] -5.219428
 initial  value -4.021244 
 iter   2 value -4.021317
 iter   3 value -4.030509
 iter   4 value -4.030525
 iter   5 value -4.030541
 iter   6 value -4.030563
 iter   7 value -4.030644
 iter   8 value -4.030820
 iter   9 value -4.031128
 iter  10 value -4.031389
 iter  11 value -4.031602
 iter  12 value -4.031627
 iter  13 value -4.031632
 iter  14 value -4.031688
 iter  15 value -4.031931
 iter  16 value -4.032092
 iter  17 value -4.032238
 iter  18 value -4.032249
 iter  19 value -4.032359
 iter  20 value -4.032370
 iter  21 value -4.032402
 iter  22 value -4.032482
 iter  23 value -4.032558
 iter  24 value -4.032560
 iter  25 value -4.032563
 iter  26 value -4.032567
 iter  27 value -4.032591
 iter  28 value -4.032591
 iter  28 value -4.032591
 iter  28 value -4.032591
 final  value -4.032591 
 converged
 initial  value -4.032621 
 iter   1 value -4.032621
 final  value -4.032621 
 converged

 $fit
 
 Call:
 arima(x = xdata, order = c(p, d, q), seasonal = list(order = c(P, D, Q), period = S), 
     xreg = constant, transform.pars = trans, fixed = fixed, optim.control = list(trace = trc, 
         REPORT = 1, reltol = tol))
 
 Coefficients:
          ar1     ar2      ma1      ma2  constant
       0.4445  0.2376  -0.5878  -0.1810     5e-04
 s.e.  0.1295  0.0684   0.1295   0.0789     2e-04
 
 sigma^2 estimated as 0.0003143:  log likelihood = 18609.42,  aic = -37206.83
 
 $degrees_of_freedom
 [1] 7115
 
 $ttable
          Estimate     SE t.value p.value
 ar1        0.4445 0.1295  3.4338  0.0006
 ar2        0.2376 0.0684  3.4750  0.0005
 ma1       -0.5878 0.1295 -4.5383  0.0000
 ma2       -0.1810 0.0789 -2.2941  0.0218
 constant   0.0005 0.0002  3.4070  0.0007
 
 $AIC
 [1] -5.225679
 
 $AICc
 [1] -5.225678
 
 $BIC
 [1] -5.219889

Fit Using ARIMA(2,1,2)

summary(garchFit(~garch(1,1), arima.res,trace = F)) 
 
 Title:
  GARCH Modelling 
 
 Call:
  garchFit(formula = ~garch(1, 1), data = arima.res, trace = F) 
 
 Mean and Variance Equation:
  data ~ garch(1, 1)
 <environment: 0x140c47948>
  [data = arima.res]
 
 Conditional Distribution:
  norm 
 
 Coefficient(s):
         mu       omega      alpha1       beta1  
 3.4484e-05  7.2658e-06  1.2435e-01  8.4479e-01  
 
 Std. Errors:
  based on Hessian 
 
 Error Analysis:
         Estimate  Std. Error  t value Pr(>|t|)    
 mu     3.448e-05   1.420e-04    0.243    0.808    
 omega  7.266e-06   9.625e-07    7.549 4.37e-14 ***
 alpha1 1.243e-01   1.003e-02   12.396  < 2e-16 ***
 beta1  8.448e-01   1.230e-02   68.666  < 2e-16 ***
 ---
 Signif. codes:  0 39;***39; 0.001 39;**39; 0.01 39;*39; 0.05 39;.39; 0.1 39; 39; 1
 
 Log Likelihood:
  20631.71    normalized:  2.897305 
 
 Description:
  Mon Apr 17 21:04:56 2023 by user:  
 
 
 Standardised Residuals Tests:
                                 Statistic p-Value     
  Jarque-Bera Test   R    Chi^2  1519.646  0           
  Shapiro-Wilk Test  R    W      NA        NA          
  Ljung-Box Test     R    Q(10)  54.80962  3.427468e-08
  Ljung-Box Test     R    Q(15)  59.74675  2.787883e-07
  Ljung-Box Test     R    Q(20)  62.13639  3.309501e-06
  Ljung-Box Test     R^2  Q(10)  10.36577  0.4090097   
  Ljung-Box Test     R^2  Q(15)  31.42486  0.007703236 
  Ljung-Box Test     R^2  Q(20)  32.75262  0.03590994  
  LM Arch Test       R    TR^2   26.89586  0.007998371 
 
 Information Criterion Statistics:
       AIC       BIC       SIC      HQIC 
 -5.793487 -5.789627 -5.793487 -5.792158
 Series: data 
 ARIMA(2,1,2) with drift 
 
 Coefficients:
          ar1     ar2      ma1      ma2  drift
       0.4445  0.2376  -0.5878  -0.1810  5e-04
 s.e.  0.1295  0.0684   0.1295   0.0789  2e-04
 
 sigma^2 = 0.0003145:  log likelihood = 18609.42
 AIC=-37206.83   AICc=-37206.82   BIC=-37165.61
 
 Training set error measures:
                        ME       RMSE        MAE        MPE     MAPE       MASE
 Training set 3.448358e-06 0.01772652 0.01111665 0.00255547 0.554396 0.04972213
                     ACF1
 Training set 0.002687182
 
 Title:
  GARCH Modelling 
 
 Call:
  garchFit(formula = ~garch(1, 1), data = arima.res, trace = F) 
 
 Mean and Variance Equation:
  data ~ garch(1, 1)
 <environment: 0x134af7ea8>
  [data = arima.res]
 
 Conditional Distribution:
  norm 
 
 Coefficient(s):
         mu       omega      alpha1       beta1  
 3.4484e-05  7.2658e-06  1.2435e-01  8.4479e-01  
 
 Std. Errors:
  based on Hessian 
 
 Error Analysis:
         Estimate  Std. Error  t value Pr(>|t|)    
 mu     3.448e-05   1.420e-04    0.243    0.808    
 omega  7.266e-06   9.625e-07    7.549 4.37e-14 ***
 alpha1 1.243e-01   1.003e-02   12.396  < 2e-16 ***
 beta1  8.448e-01   1.230e-02   68.666  < 2e-16 ***
 ---
 Signif. codes:  0 39;***39; 0.001 39;**39; 0.01 39;*39; 0.05 39;.39; 0.1 39; 39; 1
 
 Log Likelihood:
  20631.71    normalized:  2.897305 
 
 Description:
  Mon Apr 17 21:04:56 2023 by user:  
 
 
 Standardised Residuals Tests:
                                 Statistic p-Value     
  Jarque-Bera Test   R    Chi^2  1519.646  0           
  Shapiro-Wilk Test  R    W      NA        NA          
  Ljung-Box Test     R    Q(10)  54.80962  3.427468e-08
  Ljung-Box Test     R    Q(15)  59.74675  2.787883e-07
  Ljung-Box Test     R    Q(20)  62.13639  3.309501e-06
  Ljung-Box Test     R^2  Q(10)  10.36577  0.4090097   
  Ljung-Box Test     R^2  Q(15)  31.42486  0.007703236 
  Ljung-Box Test     R^2  Q(20)  32.75262  0.03590994  
  LM Arch Test       R    TR^2   26.89586  0.007998371 
 
 Information Criterion Statistics:
       AIC       BIC       SIC      HQIC 
 -5.793487 -5.789627 -5.793487 -5.792158

     meanForecast  meanError standardDeviation lowerInterval upperInterval
 1   3.448358e-05 0.01141431        0.01141431   -0.02233716    0.02240613
 2   3.448358e-05 0.01155557        0.01155557   -0.02261402    0.02268299
 3   3.448358e-05 0.01169084        0.01169084   -0.02287914    0.02294811
 4   3.448358e-05 0.01182046        0.01182046   -0.02313318    0.02320215
 5   3.448358e-05 0.01194473        0.01194473   -0.02337676    0.02344572
 6   3.448358e-05 0.01206395        0.01206395   -0.02361042    0.02367939
 7   3.448358e-05 0.01217837        0.01217837   -0.02383468    0.02390365
 8   3.448358e-05 0.01228825        0.01228825   -0.02405004    0.02411900
 9   3.448358e-05 0.01239380        0.01239380   -0.02425692    0.02432589
 10  3.448358e-05 0.01249525        0.01249525   -0.02445575    0.02452472
 11  3.448358e-05 0.01259278        0.01259278   -0.02464692    0.02471589
 12  3.448358e-05 0.01268659        0.01268659   -0.02483078    0.02489975
 13  3.448358e-05 0.01277685        0.01277685   -0.02500768    0.02507665
 14  3.448358e-05 0.01286372        0.01286372   -0.02517794    0.02524691
 15  3.448358e-05 0.01294735        0.01294735   -0.02534185    0.02541082
 16  3.448358e-05 0.01302788        0.01302788   -0.02549970    0.02556867
 17  3.448358e-05 0.01310546        0.01310546   -0.02565175    0.02572072
 18  3.448358e-05 0.01318021        0.01318021   -0.02579826    0.02586722
 19  3.448358e-05 0.01325225        0.01325225   -0.02593945    0.02600842
 20  3.448358e-05 0.01332169        0.01332169   -0.02607556    0.02614453
 21  3.448358e-05 0.01338865        0.01338865   -0.02620679    0.02627576
 22  3.448358e-05 0.01345322        0.01345322   -0.02633335    0.02640232
 23  3.448358e-05 0.01351551        0.01351551   -0.02645543    0.02652440
 24  3.448358e-05 0.01357560        0.01357560   -0.02657320    0.02664217
 25  3.448358e-05 0.01363358        0.01363358   -0.02668685    0.02675581
 26  3.448358e-05 0.01368954        0.01368954   -0.02679652    0.02686549
 27  3.448358e-05 0.01374356        0.01374356   -0.02690239    0.02697136
 28  3.448358e-05 0.01379570        0.01379570   -0.02700459    0.02707356
 29  3.448358e-05 0.01384605        0.01384605   -0.02710328    0.02717224
 30  3.448358e-05 0.01389467        0.01389467   -0.02719857    0.02726754
 31  3.448358e-05 0.01394163        0.01394163   -0.02729061    0.02735957
 32  3.448358e-05 0.01398699        0.01398699   -0.02737951    0.02744847
 33  3.448358e-05 0.01403081        0.01403081   -0.02746539    0.02753436
 34  3.448358e-05 0.01407314        0.01407314   -0.02754837    0.02761733
 35  3.448358e-05 0.01411405        0.01411405   -0.02762855    0.02769751
 36  3.448358e-05 0.01415358        0.01415358   -0.02770603    0.02777500
 37  3.448358e-05 0.01419179        0.01419179   -0.02778091    0.02784988
 38  3.448358e-05 0.01422872        0.01422872   -0.02785330    0.02792226
 39  3.448358e-05 0.01426442        0.01426442   -0.02792326    0.02799223
 40  3.448358e-05 0.01429893        0.01429893   -0.02799091    0.02805988
 41  3.448358e-05 0.01433230        0.01433230   -0.02805631    0.02812527
 42  3.448358e-05 0.01436456        0.01436456   -0.02811954    0.02818851
 43  3.448358e-05 0.01439576        0.01439576   -0.02818069    0.02824966
 44  3.448358e-05 0.01442594        0.01442594   -0.02823983    0.02830880
 45  3.448358e-05 0.01445512        0.01445512   -0.02829702    0.02836599
 46  3.448358e-05 0.01448334        0.01448334   -0.02835234    0.02842131
 47  3.448358e-05 0.01451064        0.01451064   -0.02840585    0.02847482
 48  3.448358e-05 0.01453705        0.01453705   -0.02845761    0.02852658
 49  3.448358e-05 0.01456260        0.01456260   -0.02850768    0.02857665
 50  3.448358e-05 0.01458731        0.01458731   -0.02855613    0.02862509
 51  3.448358e-05 0.01461123        0.01461123   -0.02860300    0.02867196
 52  3.448358e-05 0.01463437        0.01463437   -0.02864835    0.02871732
 53  3.448358e-05 0.01465676        0.01465676   -0.02869223    0.02876120
 54  3.448358e-05 0.01467842        0.01467842   -0.02873470    0.02880366
 55  3.448358e-05 0.01469939        0.01469939   -0.02877579    0.02884476
 56  3.448358e-05 0.01471968        0.01471968   -0.02881556    0.02888453
 57  3.448358e-05 0.01473932        0.01473932   -0.02885405    0.02892302
 58  3.448358e-05 0.01475833        0.01475833   -0.02889130    0.02896027
 59  3.448358e-05 0.01477672        0.01477672   -0.02892736    0.02899633
 60  3.448358e-05 0.01479453        0.01479453   -0.02896227    0.02903123
 61  3.448358e-05 0.01481177        0.01481177   -0.02899605    0.02906502
 62  3.448358e-05 0.01482846        0.01482846   -0.02902876    0.02909772
 63  3.448358e-05 0.01484461        0.01484461   -0.02906042    0.02912938
 64  3.448358e-05 0.01486025        0.01486025   -0.02909107    0.02916003
 65  3.448358e-05 0.01487539        0.01487539   -0.02912074    0.02918971
 66  3.448358e-05 0.01489005        0.01489005   -0.02914947    0.02921844
 67  3.448358e-05 0.01490424        0.01490424   -0.02917728    0.02924625
 68  3.448358e-05 0.01491798        0.01491798   -0.02920422    0.02927318
 69  3.448358e-05 0.01493128        0.01493128   -0.02923029    0.02929926
 70  3.448358e-05 0.01494417        0.01494417   -0.02925554    0.02932451
 71  3.448358e-05 0.01495664        0.01495664   -0.02927999    0.02934896
 72  3.448358e-05 0.01496872        0.01496872   -0.02930367    0.02937263
 73  3.448358e-05 0.01498042        0.01498042   -0.02932659    0.02939556
 74  3.448358e-05 0.01499174        0.01499174   -0.02934880    0.02941776
 75  3.448358e-05 0.01500271        0.01500271   -0.02937030    0.02943926
 76  3.448358e-05 0.01501334        0.01501334   -0.02939112    0.02946009
 77  3.448358e-05 0.01502363        0.01502363   -0.02941128    0.02948025
 78  3.448358e-05 0.01503359        0.01503359   -0.02943081    0.02949978
 79  3.448358e-05 0.01504324        0.01504324   -0.02944973    0.02951870
 80  3.448358e-05 0.01505259        0.01505259   -0.02946805    0.02953702
 81  3.448358e-05 0.01506164        0.01506164   -0.02948579    0.02955476
 82  3.448358e-05 0.01507041        0.01507041   -0.02950298    0.02957194
 83  3.448358e-05 0.01507890        0.01507890   -0.02951962    0.02958859
 84  3.448358e-05 0.01508713        0.01508713   -0.02953575    0.02960471
 85  3.448358e-05 0.01509510        0.01509510   -0.02955136    0.02962033
 86  3.448358e-05 0.01510281        0.01510281   -0.02956649    0.02963546
 87  3.448358e-05 0.01511029        0.01511029   -0.02958114    0.02965011
 88  3.448358e-05 0.01511753        0.01511753   -0.02959534    0.02966430
 89  3.448358e-05 0.01512455        0.01512455   -0.02960908    0.02967805
 90  3.448358e-05 0.01513134        0.01513134   -0.02962240    0.02969137
 91  3.448358e-05 0.01513793        0.01513793   -0.02963530    0.02970427
 92  3.448358e-05 0.01514430        0.01514430   -0.02964780    0.02971677
 93  3.448358e-05 0.01515048        0.01515048   -0.02965991    0.02972888
 94  3.448358e-05 0.01515646        0.01515646   -0.02967164    0.02974061
 95  3.448358e-05 0.01516226        0.01516226   -0.02968300    0.02975197
 96  3.448358e-05 0.01516788        0.01516788   -0.02969401    0.02976298
 97  3.448358e-05 0.01517332        0.01517332   -0.02970467    0.02977364
 98  3.448358e-05 0.01517859        0.01517859   -0.02971500    0.02978397
 99  3.448358e-05 0.01518370        0.01518370   -0.02972501    0.02979398
 100 3.448358e-05 0.01518864        0.01518864   -0.02973471    0.02980368